Soliton dynamics for generalized KdV equations in a slowly varying medium

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soliton Interaction with Slowly Varying Potentials

We study the Gross-Pitaevskii equation with a slowly varying smooth potential, V (x) = W (hx). We show that up to time log(1/h)/h and errors of size h in H, the solution is a soliton evolving according to the classical dynamics of a natural effective Hamiltonian, (ξ + sech ∗ V (x))/2. This provides an improvement (h→ h) compared to previous works, and is strikingly confirmed by numerical simula...

متن کامل

Dynamics of Kdv Solitons in the Presence of a Slowly Varying Potential

We study the dynamics of solitons as solutions to the perturbed KdV (pKdV) equation ∂tu = −∂x(∂ xu + 3u − bu), where b(x, t) = b0(hx, ht), h 1 is a slowly varying, but not small, potential. We obtain an explicit description of the trajectory of the soliton parameters of scale and position on the dynamically relevant time scale δh−1 log h−1, together with an estimate on the error of size h. In a...

متن کامل

Deformations of the Kdv Hierarchy and Related Soliton Equations

We define hierarchies of differential–q-difference equations, which are q–deformations of the equations of the generalized KdV hierarchies. We show that these hierarchies are bihamiltonian, one of the hamiltonian structures being that of the q–deformed classical W–algebra of slN , defined by Reshetikhin and the author. We also find q–deformations of the mKdV hierarchies and the affine Toda equa...

متن کامل

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

Soliton-complex Dynamics in Strongly Dispersive Medium

The concept of soliton complex in a nonlinear dispersive medium is proposed. It is shown that strongly interacting identical topological solitons in the medium can form bound soliton complexes which move without radiation. This phenomenon is considered to be universal and applicable to various physical systems. The soliton complex and its ”excited” states are described analytically and numerica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2011

ISSN: 1948-206X,2157-5045

DOI: 10.2140/apde.2011.4.573